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GENERATION OF PSEUDO-RANDOM NUMBERS 

(. I. INTRODUCTION 

. 
The advent of high-speed digital computers has made it possible to use simula- 

These simulations are generally tion techniques incorporating probabilistic features. 
referred to as Monte Carlo simulations and are  resorted to whenever the systems being 
studied are not amenable to deterministic analytical methods o r  where direct experi- 
mentation is not feasible. An integral part of these simulations is the use of random 
numbers having a certain specified distribution characteristic of the process being 
studied. Since these simulations require a vast amount of calculations, speed is a 
vitally important factor. 
computer's memory with large aggregates of random numbers. 
computer algorithms were developed which allowed random numbers to  be generated 
on-line. Since the generation of random numbers by such numerical algorithms is 
somewhat a contradiction in  terms, they are often called "pseudo-random" numbers. 
There are essentially two problems encountered in generating such random numbers. 
One is that the generated random numbers are not representative of the desired 
distribution, and the other is that they are not statistically random, i . e . ,  that there 
exist correlations in the generated numbers. The latter problem is the more serious 
one as evidenced by the considerable attention it has been given in the literature. 

I t  was soon recognized that it was intractable to fill the 
Because of this ,  

This report presents several random number generators which have been found 
particularly useful in aerospace engineering applications. 
also listed in Appendix B for most of the generators. 

APL computer programs are 

11. UNIFORM RANDOM NUMBER GENERATORS 

The basic element of all Monte Carlo simulations is the uniform random number 
generator. Once uniform random numbers are available, all other desired distributions 
can be obtained either by use of the probability integral transformation o r  by applying 
some known relationship between the desired distribution to be generated and the 
uniform distributi0n.l One of the early methods used to generate uniform random 
numbers was the mid-square method originally proposed by  John V.  Neumann. In 
practice, one selects an arbitrary K - d i g i t  number, squares it, and then selects the K 
middle digits as the new random number. The process is repeated using this new 
random number. The drawback of this method is that it can produce a zero random 
number at unpredictable times and , thus ,  the process terminates. Consequently, 
this method was abandoned quite early in favor of the so-called congruential method 
first proposed by D .  H. Lehmer in  1949 [ 11. Accordingly, the random number 
generator takes the form 

1. 
- -..__ 

Often it is convenient to generate a random number from a specified distribution 
by employing its relationship to the normal distribution. 
generate the normal random number(s) as a function of uniform random numbers 
and then proceed to the desired distribution. 

I 
However, one must first 



Xi+l 5 (a Xi + b )  Mod M , (1) 

where the multiplier a ,  increment b , and modulus M are integers. 
X is called the "seed" of the random number generator. Since the congruential 

relationship (1) is cyclical, the sequence of random numbers will repeat after a cer- 
tain period. Generators i n  which b = 0 are called multiplicative; otherwise, they are 
called mixed. The statistical behavior of the generated random numbers is predomi- 
nantly governed by the choice of the multiplier a and the modulus M.  Therefore, the 
most widely used generators are of the multiplicative type (b  = 0 ) .  Many empirical 
and theoretical tests have been developed to assess the "goodness" of a random 
number generator. One of the most popular of these tests today is the lattice test 
which determines the lattice structure of the random number generator by comparing 

i +n i+n- 1 
to this test an acceptable generator can be obtained by selecting the constants a, b y  
and M to achieve a nearly hyper-cubic lattice s t ructure ,  i . e .  the ratio of cell sides 
should be close to unity [ 21.  In practice, n is usually less than o r  equal to five [3].  
Especially useful are congruential generators for whic'h the modulus M is a prime 
number and hence, are called prime modulus generators. I f  the multiplier a is selected 
to be a primitive root modulo M ,  the generated random number sequence attains i t s  
maximum period P = M - 1  and all possible value from 0 to M - 1  will be generated. 

The starting value 

0 

9 

successive n-tuples (x. x i+l '  2 x i+l, X i+2, .. ., x ). According ) and ( x  

Two useful uniform random number generators of this type which have very 
satisfactory lattice structures are : 

with 5-dimensional cell side ratios 1: 7.60:3. 39:2.09:1. 67 ,  and 

6 0 2 , 4 7 9  Mod(231 a = 7  -1) = 2 9 , 9 0 3 , 9 4 7  , 

M = z 3 l - l  = 2 , 1 4 7 , 4 8 3 , 6 4 7  , 

b = 0 . and 

with 5-dimensional cell side ratios : 1 : 1.04: 1.30: 1.22: 1 . 0 9  [ 41 . 

111. RANDOM NUMBERS FROM CONTINUOUS DISTRIBUTIONS 

Many of the generators for continuous distributions are obtained by a direct 
application of the probability integral transformation [ 51. For a given uniform random 
number u between zero and one, a random number x having the desired distribution 
F(x)  is obtained by solving the equation u = F(x) for x. Since this process requires 

the determination of the inverse cumulative distribution function F - l ( x ) ,  its prac- 
ticality depends upon the availability of explicit expressions o r  convenient approxima- 
tions for this inverse cumulative distribution function. We now discuss methods on 

I 
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how to generate random numbers from continuous distributions which appear frequently I in aerospace engineering simulations. 

A .  The Normal Distribution 

The most common distribution is the normal o r  Gaussian distribution with den- 
sity function given by 

Consequently, a variety of methods have been devised which can be used to generate 
normal random numbers. Of these, the following three were found to be satisfactory 
and practical in terms of accuracy and computer run time. 

1. Hastings Approximation - . ._ - .  _ _  I -_ _ _  
This method invokes the probability integral transformation in a slight variation 

in that it employs the complement of the cumulative distribution Q(x) = 1-F(x). The 
reason for this is that suitable rational approximations for Q(x) were derived by 
Hastings [ 6 ] .  The most accurate of Hastings approximations is given as: 

c + C 1 t + C 2 t  2 
0 

3 + €(PI x = t - . .  . - 

1 
2 1 + d t + d2t + d3t 

where 

Co = 2.515517 

C1 = 0.802853 

C 2  = 0.010328 

dl  = 1.432788, t = d G  
d = 0.189269, 0 5 p 5 0.5 2 

d3  = 0.001308, and Ic(p) I L 4 . 5  x 

X is the desired Normal random number and p is a uniform random number. 

2. Box-Mueller o r  "Polar" Method _ _  _ .  

This method generates a pair of normal random variables using a pair of uni- 
form random numbers as follows: 

3 
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Let u and u be independent uniform random variables and define 1 2 

2 ’  x = (-21n u1)l l2  cos 2n u 1 

x2  = (-21n ul)1’2 sin 2.rr u 2  . 

Then x and x are  two independent normal random variables with zero mean and unit 

variance. To see this, we establish the inverse relationships 
1 2 

(x12 + x 2 2> 

and 

It follows then that the joint probability density function of x is 

and ,  t hus ,  the desired conclusions, including the independence of x1 and x 2 ,  are 
obtained [ 71. 

3. Central Limit - Method - _.-._ 

Let x l ,  x 2 ,  . . . , x be a sequence of n uniform random variables. Then n 

-112 n 

Yn 
1=1 

will  be distributed asymptotically as a normal random variable with zero mean and unit 
variance. For n = 1 2 ,  we see that (9 )  reduces to 

1 2  

y12 = x x i  - 6 
i= 1 

. 
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The exact distribution of the standardized sum of n independent uniform random 
numbers can be easily derived using moment generating functions. 
of PI independent uniform variables has moment generating function 

Since the sum x 

its density function is given as 

n 
n-  1 f (x)  = __- (-ilk (: ) [ (x-k)  u(x-k) l  (n- l)! 3 

k= 0 

where 

0 s < o  

and O l x l n  . 
1 s > o  

u(s)  = 

For the standardized random variable y in equation ( 9 ) ,  we find that n 

a 

where - 6 5 y  i & . 
Density functions obtained by this method for n = 2 ,  4 ,  1 2 ,  20 are  compared 

with the normal density function (dotted) in Figure 1. Also, a comparison of the 
cumulative distribution function for n = 1 2  w i t h  the cumulative normal distribution is 
given in Table 1 to four decimal places. 

The agreement between the two distributionsis very good except in the tail 
areas. But a comparison of random numbers generated by the three methods revealed 
no significant statistical differences even for the tail areas. 

A comparison of computer CPU run times for each of these three methods to 
generate 1000 normal random numbers is as follows: 

5 



r - 1 

Met hod Time 

Hastings Approximation 1.13 sec 

Box-Mueller 1 .02  sec 

1.08 sec Central Limi t  Method 2 

A I 

-5 0 5 

Figure 1. Normal density function (dotted) and standardized 
sum of uniforms (n = 2 ,  4,  12, 20) .  

TABLE 1. CUMULATIVE NORMAL DISTRIBUTION 

X 

- 4.0 
-3.5 
- 3.0 
-2.5 
-2.0 
-1.5 
-1.0 

-0.5 
0.0 
0.5 
1.0 

1.5 
2.0 
2.5 
3.0 
3.5 
4.0 

3.167 
2.326 . 
6.210 
1.350 \ 

2.275 x 10.' 
6.681 x 10.' 
1.587 x 10.' 
3.085 Y 10.' 

5.000 x 10.' 
6.915 x 10.' 

8.413 Y 10.' 
9.332 I 10.' 

9.773 x 10-1 
9. 938 , 10- 

9.987 x 10-l 
9.998 )I 10-1 
1.000 

F C .  L. (X) 
8.526 .( 

1.212 x 

5.579 
1.007 x 

2.227 x 10.' 
6.745 x 10.' 
1.608 Y 10-l 
3.106 x 10-1 
5.000 x 10-1 
6.894 v 1O-I 

9.326 x 10-l 
9.777 x 10-l 

8.393 Y 10-1 

9.944 Y 10- 1 

9.990 x 10-1  

9.999 x 10- 

1.000 

Tomparison of the cumulative normal distribution 
F(x) with the cumulative distribution function for 
the central limit method using equation (13) as the  
density function with n = 12. 
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B . Log-Normal Distribution 

It is often claimed that the log-normal distribution is as fundamental as the 
normal distribution and may be thought of as arising from the combination of random 
terms by a multiplicative process. The log-normal distribution has been applied in a 
wide variety of fields including social sciences , physical sciences , and engineering and 
its density function is given by 

Log-normal random numbers x may be generated by the relationship x = e':, where y 
is a normal random number obtained by methods discussed in Section IIJ,  paragraph A .  

C.  Weibull Distribution 

The Weibull distribution is perhaps the most popular distribution at the present 
time when dealing with problems of reliability and material fatigue. Its appeal stems 
from its mathematical tractability and for this reason is often preferred to the gamma 
distribution. The Weibull density function is given by 

The cumulative distribution function F(x)  = 1 -e 
relations hip 

leads immediately to the inverse 

P 
x =  (&) 

as the desired Weibull random generator. 

D.  Gamma Distribution 

The gamma distribution is another two parameter distribution which is also quite 
flexible in fitting a variety of random processes. 
meteorology, and aerospace engineering. I ts  density function is 

I t  finds use in reliability analysis, 

-ax 6-1 P 
f ( x )  = - e X 

( 8 )  
a 

where 0 5 x < and a,P > 0. 

7 
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For integer values of 6, the  gamma distribution is often referred to as the Erlangian 
distribution after the Danish mathematician, A .  K .  Erlang, who introduced it in the 
theory of queues and Markov processes in  1917. 
Erlangian distribution are generated by the formula 

Random numbers following the 

P 
x = - -  l x l n  u. . 

a 1 
i=l 

E .  Exponential Distribution 

The exponential distribution appears ,often in  engineering applications because of 
its importance in reliability theory and queueing theory. The probability density 
function of the exponential distribution is 

-ax f (x ; a )  = a e  J 

where x , a  > 0.  
tribution function is easily obtained by solving the equation u = 1 - e 
producing 

In this case, an explicit expression for the inverse cumulative dis- 
- a x  for x ,  

In u x = - -  
a 

as the desired exponential random number generator. 

F .  Chi-square Distribution 

A s  a special case of the gamma distribution, the  X2-distribution is often used 
as a measure of goodness of f i t  of a specified distribution to observed frequencies. 

For discrete variates, x 
distribution. 

2 provides a sensitive test of departure from the Poisson 
The Chi-square density function with n degrees of freedom is given by 

, n - 1  -x/2 e 

r (n) 
f ( x ; n )  = 9 > o  and n = 1,2 ,3 ,  ... ( 2 2 )  

Because of its relationship to the normal distribution, Chi-square random numbers 
may be generated by taking the sum of n squared Normal random numbers. 

8 



G .  F Distribution 

The F distribution appears extensively in statistical hypothesis testing under 
normality theory and has the density function 

n n'2 "'2 r (y) x n /2  - 1 

r ( n / 2 )  r ( m / 2 )  (m + nx) 1/2(m+n) ' f (x ;m,n)  = - -  

where x > 0 and m ,n = 1 , 2 , .  . . , are degrees of freedom. 
found to be most convenient to make use of the  F distribution's relationship to the 

Chi-square distribution in order to generate F random numbers. 
and x (n)  are  two independent Chi-square random variables with m and n degrees of 
freedom, respectively, then 

In practice, it is generally 

2 That is, i f  x (m)  
2 

follows the F-distribution with m ,  n degrees of freedom. Thus, 

m 

is the desired F random number generator with m and n degrees of freedom and the 
Xi ,  i = 1 , 2  ,... ,m+n are Normal random numbers. 

H .  Beta Distribution 

To generate random numbers from the Beta distribution with density function 
given by : 

it is most convenient to make use of a relationship between the Beta distribution and 
the F-distribution. 
with m and 
Consequently, 

That is, i f  X is a random variable following the F distribution 

follows the  Beta distribution. 1 
1 + m/n X n degrees of freedom , then Y = - 

9 
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2m 

i=l 
2m 2n+2m Y =  

i=l i = 2 m + l  

is the desired Beta random numbers generator, where the X. 's  a re  standard Normal 

random numbers realized by methods in Section I11 , paragraph A.  
1 

IV. RANDOM NUMBERS FROM DISCRETE DISTRIBUTIONS 

Generation of random numbers from a discrete distribution is handled in a 
manner analogous to that of a continuous distribution. 
u and cumulative discrete distribution F ( x ) ,  the least value of x for which F(x) ,u is 
sought. 

Given a uniform random number 

This x is the desired random number having discrete density function f(x) .  

A .  Binomial Distribution 

The cumulative binominal distribution is given by 

X 

\ I  k=O 

For a given uniform number u ,  one may successively evaluate the upper limit x until 
the minimum value of x is found for which 

An alternate method is based on the sum of n independent Bernoulli random variables. 
By this method , Bernoulli tr ials,  each having probability of success p , are simulated 
with each Bernoulli trial being assigned a one o r  zero (depending on success o r  failure). 

2. Because factorials , exponentials , and powers frequently occur in probability 
density functions , care must be taken to avoid computer overflows/underflows 
when computing individual components of the density function. Recursive rela- 
tionships are quite useful in  dealing with these t y p e s  of problems,  b u t  computer 
programs employing recursive relationships a re ,  in  general, much slower. 
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Then the sum of these n Bernoulli random numbers will be a random number from a 
Binomial population with parameters n and p .  
is relatively slow. 

However, it was found that this process 

B . Poisson Distribution 

Poisson random numbers x may be generated from cumulative distribution 
function 

F 

-1 

by using the same technique which was used for the binominal distribution. An 
alternate method for obtaining Poisson random numbers is by generating uniform 
random numbers u. until the inequality 

1 

- A  k + l  

i= 1 
n u . < e  

1 

is satisfied, which gives k as the desired Poisson random number. 
method was found to be relatively slow. 

However, this 

C. Neyman Type-A and Thomas Bistributions 

These two distributions belong to the category of cluster (self-exciting) point 
processes and have found application in  aerospace engineering, ecology, reliability, 
and forestry. Cluster processes are  characterized by a primary (mother) process 
which generates at each point secondary (daughter) events. When only daughter 
events appear in the final process and when primary and secondary distributions are 
both Poisson, the resulting distribution is known as the Neyman type-A counting 
distribution w i t h  probability function [ 81 

t 
00 

, n = 0 , 1 , 2  ,... B~ e-’ - a m  (am>n e 
p(n;a ,B)  = n! m! 

m-0 and a,B > 0 . 

The parameter (3 represents the rate at which primary events occur and a is the 
average number of secondary counts per primary. 
(1 + a)ap, respectively. 
events are counted in  the final process. 

The mean and variance is a’ and 
The Thomas distribution is similar, except that primary 

The probability function is given by 

11 



n 

n = 0 ,  1, 2 ,  ... (am)n-m -am B~ e - @  - e  P(n;aYB) = c (n-m)! m! Y 
( 3 3 )  

m =O 

2 with mean (1 + a) f3 and variance (1 + 30. + a ) f3. 

APL programs are provided in  Appendix B which generate random numbers from A 

these distributions. 

V .  CONCLUSION 

Because large scale simulations often require a vast number of random numbers 
from various distributions, emphasis should be placed on speed and accuracy of the 
methods used. 
this report to be both suitable and practical. 
exhausted and the literature is found to be extensive in this area. Random numbers 
can be generated from nonuniform distributions by finding the inverse to the cumula- 
tive distribution functions in  accordance with the probability integral transformation. 
However 
statistical relationships may be used to generate the desired random numbers. Again, 
speed and accuracy should be key factors in  choosing between candidate methods. 
Some useful approximations to the cumulative normal distribution are given in  Appendix 
A and APL programs for most of the generators are listed in  Appendix B. 

We have found the congruential uniform generators presented in 
However, not all possibilities have been 

when no convenient inverse exists , numerical approximation methods or 

? 
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APPENDIX A 

APPROXIMATION TO THE CUMULATIVE NORMAL DISTRIBUTION 

Because of the extensive application of the Normal distribution in aerospace 
simulation studies, w e  include here three methods for approximating the cumulative 
standard Normal distribution. Other useful formulae may be found in Reference 9. 
Denote the standard normal density function by 

2 -112  e-x I 2  f (x)  = (2Tr) 

and its cumulative distribution function by F(x).  
each of the following: 

Then F(x) may be represented by 

x + x + x +  x+ ... ' > O 1 1 1 2 3  1 -f(x)  -- - - [ 
2 2  

, x 2 0  1 _ _  +f(x)  2 1- 3+ 5- 7+ 9- - - .  
[ x 2  x 2  2x2 3x 4x - - ~ - __ 

(A- 2) 

(A-  3) 

The last two formulae are called continued fractions, where the conventional notation 

is used to conserve space. Since each formula is exact,  we investigate their rates of 
convergence to  F(x) for computational convenience. 

Equation A-2 converges most rapidly for x 2 3 while A - 1  and A - 3  are preferred 
for 0 < x < 3. 
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APPENDIX B 

APL PROGRAMS 

P R4N CDFI CDF 
C11 R+tO 
C 2 1  L:R+R,+/CDF<UNF 1 
C 3 1  +(O<N+N-l)/L 
C41 +O 
C 5 1  A RETURNS N RANDOM NUMBERS FROM THE 
C6l A DISCRETE DISTRIBUTION FUNCTION 
c71 R SPECIFIED BY CDF. 

V 

V RtCTRALIM N - 
C 1 1  R+ 6+(+/-1+?Np1001)t100O;N+N,l2 

C 3 l  A THIS FUNCTION GENERATES NORMAL 
C41 A RANDOM NUMBERS ACCORDING TO 
C 5 l  A THE CENTRAL LIMIT METHOD. 

c 2 1  +o 

V 

V P+K CUMNORM X;C;S;Y;A;M;T;Z;SO 
[l] C + ( O 2 ) * - 0 . 5 ; Y + S + S O + X ; A t l + K x 2 ; M + O  
c 2 3  L O : T + X X X X Z X - ~ * L Z + ~ + K - M + M + ~  
C 3 1  A+(2xZ)+-l+T+A 

C 5 l  Y+X+ZtY 
C61 +(M<K)/LO 
C71 P+O 0 0 

C41 S + S + S O + S O X - X ~ X X ( - ~ + ~ X M ) + M X ~ X ~ + ~ ~ M  

C8l PCl]+I-Cx(*-XxX+2)tY 
C91 P C 2 ] + 0 . 5 + C x ( * - X x X i 2 ) x X f A  
C l O I  PC31+0.5+CxS 
c111 +o 
C121 A THREE FORMULAE FROM THE HANDBOOK OF MATHEMATICAL 
C131 R FUNCTIONS, EDITED BY ABROMOWITZ, 1970 , ARE PROVIDED. 
C141 A THE FIRST TWO ARE CONTINUED FRACTIONS AND THE THIRD IS 
C151 R A POWER SERIES. PC11 (E&. 26.2.14, PAGE 9 3 2 ,  GIVES 
Cl61 A P(X), X>O. PC21 ALSO GIVES P(X) AND IS E&. 26.2.15. 
C171 A PC33 IS E&. 26.2.10. C13 CONVERGES MOST RAPIDLY FOR 
C181 A X13 WHILE PC21 AND PC31 ARE PREFERRED FOR O<X<3. 
E191 A PROGRAMMED BY L. HOWELL, 19 MAY 82. 

V 

V E+PARAM GENLOGNORM N;MU;VAR 
C11 VAR+PARAMC2l;MV+PARAM[ll 
C 2 1  E+*MU+(VAR*0.5)xNORM N 
C 3 1  +O 

C 5 1  A NUMBERS WITH PARAMETERS MU AND 
C6l A VAR (MU AND VAR ARE THE MEAN 
C7l A AND VARIANCE OF THE DEFINING NORMAL 
C 8 1 A DISTRIBUTION) . 

C4I A GENERATES N LOG-NORMAL RANDOM 

V 

14 



V R+HASTING N;C;D;UO;NU;DE;T 
c11 c+2.515517 0.8028~3 O . Q I O ~ ~ ~ ; B + I  1.432788 o.ia9269 'o.ooi308 
C 2 1  UO+-0.5001+(?Np1000)+1000 

C 4 3 NU+C E-% 3 +Tx 6712 I + F x C I  
C 5 1  DE+DC11+TxDC21+TxDC3~+T~DC41 
C61 R+(xUO)x(T-NU+DE) 
C71 +O 
C81 A GENERATES NORMAL RANDOM NUMBERS 
C91 A USING HASTING'S RATIONAL APPROXIMATIONS 

C 3 1  T+(-2x@IUO)*0.5 

Q 

v 
c TI 
c 2 1  
C 3 1  
C41 
C 5 1  
C61 
C71 
C81 
C91 
C l O l  
c111 
C r 2 1  
C131 
Ci41 
C151 
C161 
C171 
C181 

c201 
C21l 
c 2 2 1  
C 2 3 1  

4 C191 

Q 

CD2$=J NJ?,Y&U AgTF5 J2.N; X ; Y; N ; NP; R ; S 

N+O 
Ll:N+N+l;S+iO;M+O 
L2:X+l;M+l+M 
1141 
L3:X+XxAxM+N+l-I1 
+(NrII+II+l)/L3 
X+X x *-  AxM 
Y+1; J+1 
L4:Y+YxW+M+l-J 
+(MrJ+J+l)/L4 
Y+Yx*-W 
S+S,XxY 
+((R<O>v(R>lE'l2)v(M~5))/L2;Rc-/-2fS 
NP+NP,+/S 
+(0.999>+/NP)/Ll 
CDF++ \NP 
+O 
A COMPUTES THE CUMULATIVE NEPMAN-TPPE-A 
A PROBABILITY DISTRIBUTION FUNCTION. 
A W IS AVERAGE NO. OF PRIMARI(M0THER) EVENTS 
A A IS AVERAGE NO. OF SECONDARY(DAUGBTER) EVENTS PER PRIMARY 
A PROGRAMMED BY LEONARD HOWELL, AUGUST 4, 1982. 

NP+*-Wxl-*-A 

Q R+NORM S 

V 
C13 R + - 6 + O . O O O l ~ + / ? S p 1 O O O O ; S + S , . . l 2 .  

15 



V PDF+PDFFRCDF CDF;Y 
c11 PDF+CDF-Y;Y+O,l+-l@CDF 

V 

V CDFtPOISSON ST;PO;P;K 
C 1 I CDF+PO+*-ST 
C 2 3 K+P+l 
C 3 1  LO:P+PxST+K 
C43 CDF+CDF,(-~~CDF)+P~PO 
C 5 1 K+K+l 
161 +(0.9999>-1tCDF)/LO 
C71 -tO 
C ~ I  A RETURNS THE CUMULATIVE POISSON 
C9l A DISTRIBUTION FUNCTION WITH 
ClOI A PARAMETER ST. 

V 

0 R+MU POISl K;F;X 
C1I R+(*-MU)x(MU*X)~!X+O,~K 
C 2 1 F++\R 
C 3 1  +O 
C4l A CUM. DIST. FUNCT. FOR POISSON 

V I 

V R+MU POIS2 K;Fl;P;X 
C1I X+O;P+R+(*-MU); 
C 2 1 
C 3 1  R+R,P 
C41 +(K*X)/L 
C51 Fl++\R 

L : P+MU x P+ X+X+ 1 

V 

V R+POLAR N 
C11 R + ( ? R ) + R + ( 2 , r x / N , 0 . 5 ) p 1 0 7 3 7 4 1 8 2 4  - 
C 2 l  R+Np(l 20.0(02)x-l 0+R)x(-2 2o.x@1 OSR)*0.5 
c 3 1  -to 
L41 A GENERATES RANDOM NUMBERS USING 
[SI A THE BOX-MUELLER METHOD, 'OFTEN 
c61 A REFERRED TO AS THE POLAR METHOD. 

v 
V R+NP RBINOl N;A;I;U;K 

Cll R+tO 
C 2 I 
C 4 1 
C 5 1  A+A+K 

C73 R+R,A 
.['SI +(o*N+N-I)/Lo 
C91 +O 

V 

LO : A+O; 1+0 

K+UZNPC 2 1 
c 3 1  L:u+(-1+?1001)~1000 

c 6 1 -+ ( NPC I I U + I +  I I L 

n 
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I 

V R+NP RBIN02 N;F;M;P;PF;U;X;Y 
C11 X+O,~M;M+NPClI;P+NPC21 

C 3 1  F++\PF 
C41 U+(-1+?Np1001)+1000 
C 5 1 R++/Uo. >F 
C S I  +O 
E71 A GENERATES BINOMIAL RANDOM NUMBERS 
C81 A USING THE INVERSE METHOD. 
C91 A NPC11 IS THE SAMPLE SIZE AND 
[lo] A NPC2) IS THE PROBABILITY 

E 2 1  PF+(X!M)x(P*X)x(l-P)*M-X 

V 

V 
c11 
c 2 1  
C 3 1  
C41 
E 5 1  
C S I  
C71 
C 8 1  

V 

R+NP RBINO3 N;M;P;U 
M+NPClI;P+NPC21 

R++/U2P 
-to 
A GENERATES BINOMIAL RANDOM NUMBERS 
A AS THE SUM OF BERNOULLI TRIALS. 
A NPCll IS THE SAMPLE SIZE AND 
A NPC21 IS THE PROBABILITY. 

u + ( - ~ + ? ( N , M ) ~ ~ o o ~ ) ~ ~ o o o  

V R+MU RPOIS3 N;A;I;K;U 
C11 ~+to;I41 
c 2 1 
C3l L:U+(-1+?1001)+1000 
C41 A+AxU 
C 5 1  K+K+1 

C71 R+R,(-l+K) 
C81 +(N>I+I+l)/LO 
C9l +O 
El01 A GENERATES POISSON RANDOM NUMBERS 
[I11 A BY TAKING THE PRODUCT OF UNFORM 
E121 A RANDOM NUMBERS AND CHECKING FOR 

L 0 : A+l ; K+O 

C S I  +(A>(*-MU))/L 

[13I A FOR THE INEQUALITY EXP(-MEAN) 
V 

V 
c11 
c 2 1  
C3l 
C41 
C 5 l  
C S I  
C71 
C81 
C9l 
C l O l  
c111 
c121 

R+MU RPOIS4 N;X;A;P;F;U;M 

L : A+MUx A9X+X+ 1 
P+P,A 
+(XtrM+MU+4xMU*0,5)/L 
P+P,A 
F++\P 
U+(-1+?Np1001)+1000 
R4+/Uo.>F 
+o 
A USES THE INVERSE CUMULATIVE 
A METHOD FOR DISCRETE RANDOM 
A NUMBERS, 

X+O;A+P+(*-MU) 
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VSTDUNFSUMC0lV 

C11 UX+N32;SIG+(NI12)*0.5 
c 2 1  x ~ - u x ~ s I G ; K + - ~ + ~ ( N + ~ ) ; Y ~ ~ o ; P R T ~ ~ o  
[3] L;Z+(Xl-K)xU+Xl>K;Xl+UX+SIGxX 
C41 StSIGX(-/(K!N)xZ*N-l)I! (N-1) 
c 5 1  Y+Y,S 
[ 6 1 PRT+PRT ,X 
C71 X+X+0.05 
C81 +(XsUXISIG)/L 
C91 0 DRAW Y VS PRT 
C l O l  +o 
[Ill A COMPUTES THE PROBABILITY DENSITY 
C1 2 1  A FUNCTION OF THE STANDARDIZED 
C 1 3 1  A SUM OF N INDEPENDENT UNIFORM 
C141 A RANDOM VARIABLES BY TAKING THE 

C171 A BY LEONARD HOWELL 08/04/82. 

V STDUNFSUM N;K;X;S;Z;PRT;Y;UX;SIG;Xl;U 

C15I A INVERSE OF ITS MOMENT GEN- 
[I61 R ERATING FUNCTION. PROGRAMMED 

V 

VSTUDENTC0lV 
V T4V STUDENT P ; C ; D ; R ; X P ; G l ; G 2 ; G 3 ; G 4 ; G ; V P ; D l D 2  

C1l Ct2.515517 0.802853 0.010328;Dtl 1.432788 0.189269 0.001308 
C 2 1  R + ( - ~ X ~ P ) * O . ~ ; V P ~ V * - ~  - 2  -3 -4 
C 3 1  XP+R-DliD2;Dl++/CxR*O 1 2;D2++/DxR*O 1 2 3 
C41 Gl+(+/XP*3 l)t4 
C 5 1  G2+(+/(XP*5 3 1 1 x 5  16 31596 
[SI G3+(+/3 19 17 15xXP*7 - 5 - 3 1)+384 
C71 G44(+/79 776 1482 1920 945xXP*9 7 5 3 1)+92160 
C8l G+Gl,G2,G3,G4 
C91 T+XP++/GxVP 
ClOI +o 
C11I A THIS FUNCTION APPROXIMATES THE INVERSE STUDENT-T 
C12I A DISTRIBUTION AND IS USEFUL IN AUTOMATIC LOOK-UP OF 

- 

C131 A CRITICAL VALUES IN HYPOTHESIS TESTING. FORMULA 
Ca41 A 26.7.5, PAGE 949 OF ABRAMOWITZ'S HANDBOOK OF 
C151 A MATHEMATICAL FUNCTIQNg IS USED IN CONJUNCTION WITH 
Cl6l A FORMULA 26.2.23 (APPROXIMATES THE INVERSE NORMAL 
C171 A DISTRIBUTION), PAGE 933. PROGRAMMED BY L. HOWELL, 
C181 A JUNE 2 3 ,  1982. 

V 
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VTHOMAS[0]V 
V CDFtTHOMAS INP;M;D;E;ED;I;J;P;T;IJ;Jl 

Cll M ~ I N P C ~ I A  AV NO OF MOTHER EVENTS(PER MS) 
C 2 1  DtINPC21n AV NO OF DAUGHTER EVENTS (COUNTS) 
C 3 1  Et(*-M)xl,M 
C41 T+EClI 
C 5 1  CDF+EClI,E~lI+E~2lxED+*-D 
C6l I42 
C71 Ll:P+J+l 
C81 E+E,(-lfE)xM+I 
C9l L2:P+-PxD+J 
C l O l  +(I>J+J+l)/L2 
C11l P+PxED 
C 1 2 1  TtPxEC21 
C131 J4l 

C 1 5 1  T+T+PxECJ+21 
Cl61 +(I>J+J+l)/L3 
C17l CDF+CDF,(-lfCDF)+T 
C181 I+I+l 
C191 +(0.9999>-1fCDF)/Ll 
c201 -to 
C 2 1 l  A RETURNS THE CUMULATIVE THOMAS DISTRIBUTION 

V 

C14I L 3 : P - + P x ( ( J l + J ) * I J ) x I J x E D t D x J l + J + l ; I J + I - J  

V 
C11 
c 2 1  
C 3 l  
C4l 
. C 5 1  
C 6 1  

V 

VUNFCOIV 
U+UNF S;N 
U+iO;N+x/S 
L : U + U , U N F D ~ U N F X + U N F M ~ U N F R ~ U N F R X U N F X  
+(O<N+N-l)./L 
U+S p u 
+O 
A STANDARD UNIFORM NUMBER GENERATOR 

VUNFICCOIV 
v UNFIC SEED 

E11 UNFMt2147483647 
C 2 1  UNFRt29903947 
C 3 1 UNFXtSEED 
C 41 UNFD++UNFM 
C 5 1  +O 
C61 A INITIALIZES PARAMETERS FOR THE 
C 7 1 FI STANDARD U.NIFO,RM GENERATOR. 

V 
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VVNFSUMCOIV 
V UNFSUM N;K;X;S;Z;U;PRT;Y 

c1l x + o ; K ~ - ~ + ~ ( N + ~ ) ; Y ~ ~ o ; P R T ~ ~ o  
[2] L:Z+(X-K)xU+X>K 
C 3 1  S + ( - / ( K ! N ) X Z * N - l > + ! ( N - l )  
C41 Y+Y,S 
C 5 1 PRTtPRT .X 
C6l X+X+O.l 
C71 +(XsN)/L 

C91 A COMPUTES INVERSE OF THE MOMENT 
[IO] A GENERATING FUNCTION OF THE SUM OF 
Clll A INDEPENDENT UNIFORM VARIABLES 

[ 8 ]  0 DRAW Y VS PRT-NI2 

V 

VUNIFORMCOIV 
V R+M UNIFORM N;I;U;A;S - 

C13 R + t O ; I ~ l ; U + S E E D ; A + l 6 8 0 7 ; M O D +  1+2*31 
C 2 1  L:U+MODIAxU 
C 3 1  S+rMxUIMOD 
C41 R+R,S 
C 5 1  +(N2I+I+l)/L 
C61 +O 
C71 A STANDARD UNIFORM NUMBER GENERATOR. 

V 
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